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Abstract. The equipartition-of-energy principle has been tested for a simple model system
of weightless granular media comprising inelastic spheres being shaken at a steady state in
a uniaxially vibrating box. Granular dynamics simulations are reported and compared with a
theoretical model based on the axioms of classical kinetic theory. For inelastic particles, both
frictionless and with rotational degrees of freedom, the shaker reaches a steady state. Both the
theoretical model and the simulation results show that equipartition always prevails at sufficiently
small vibration amplitudes, irrespective of the frequency, over the whole density range. The
independence of the reduced energy on frequency is an exact scaling result. When the shaker
amplitude increases to the same order as a density-dependent characteristic path length, there are
significant deviations from equipartition behaviour. In all the simulations, a Maxwell–Boltzmann
distribution of velocities closely prevails within each degree of freedom, even when equipartition
is not obtained between the longitudinal and transverse directions. The steady-state energetics
of the saw-tooth shaker are evaluated analytically by means of an energy balance using exact
kinetic theory and the known hard-sphere fluid collision frequency via the equation of state.
This gives rise to scaling laws which enable granular-‘thermodynamic’ and transport properties
of the fluidized granular material to be determined from the corresponding-state thermodynamic
and transport properties of the classical hard-sphere fluid in thermal equilibrium.

1. Introduction

In recent years there have been numerous attempts to extend the concepts of classical
thermodynamics to granular materials. Of particular interest recently are the theoretical
studies of Edwards and co-workers (1993) in which the role of ‘entropy’ in the specification
of a powder is considered from a statistical mechanical viewpoint. Whilst the statistical
mechanical entropy for a static powder may be a useful concept, ground-state ‘entropy’ is
analogous to the zero-point thermodynamic state function. As such, its application to the
state of a granular solid requires a formal macroscopic definition by analogy with classical
thermodynamics. The fundamental question then arises: to what extent can the state of a
dynamic granular material be characterized by quasi-thermodynamic state functions such as
granular ‘temperature’ or granular ‘entropy’?

The simplest treatable model of a powder is a collection of classical, monodisperse,
frictionless dynamical spheres, which are continuously or systematically densified by a well
defined densification process until they are so dense that they are in a quasi-vitreous state.
If the hard-sphere glass (amorphous solid) is produced via such stable and metastable path
states of the thermal hard-sphere fluid, classical thermodynamic formulae can be used to
define and calculate the residual entropies, volumes and other excess properties relative to
the crystalline state, of the hard-sphere model glass (Woodcock 1981).
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Alternatively, all granular materials at rest could be regarded as colloidal glasses; many
common transport and mixing processes involve the fluidization of these materials. In
these processes the particles acquire kinetic energy which can be transferred from one
particle to another in collisions, just like molecules. It therefore seems worthwhile to ask
whether, under steady-state conditions, when mechanical energy of shaking is continuously
being converted to heat by inelastic collisions, the principle thermodynamic condition
of ‘equipartition of energy’ can prevail. If so, under what conditions does ‘granular
thermodynamics’ exist as abone fidesubject? An answer to this question, for any well
defined process, if affirmative, might not only lend authenticity to the concept of ‘entropy’ or
‘free energy’ of granular materials, eventually, but it could provide the ‘reversible paths’ that
will enable such properties to be calculated by computer simulations. Particulate computer
simulations are now becoming an indispensable tool for obtaining insights into many aspects
of fluidized granular media; the general computational approach has been reviewed recently
by Barker (1993).

Ingenious experimental studies on vibrating bead systems, involving high-speed
photography, have also been reported recently (Warret al 1995a). These studies enable
the velocity distributions to be observed experimentally; preliminary results for two-
dimensional systems indicate complex and subtle deviations from Maxwell distributions
when a gravitational field acts in the same direction as the vibration. Computer simulation,
however, may be better placed to investigate these phenomena for very simple models
in the absence of gravity. The purpose of the simulations reported here is to take the
simplest imaginable three-dimensional granular system;N monodisperse spheres in a cubic
box lengthL, initially without the complication of gravity, and to examine the obedience
of the model to the statistical thermodynamic principle of equipartition of energy and the
Maxwell–Boltzmann velocity distribution law.

The equipartition of energy principle requires that a system in thermal equilibrium
should distribute the total kinetic energy of all the atoms and/or molecules in that system,
on average, equally between all the degrees of freedom of the system. In a granular sphere
system in three dimensions with fixed total momenta, there are 3N − 3 translational and,
additionally for rough spheres, 3N rotational energies which can fluctuate; i.e.∼ 6N degrees
of freedom. The equipartition principle requires that1

6 of the total kinetic energy should,
on average, reside in each mode of motion.

The concept of ‘granular temperature’ which, unfortunately, has been widely used
previously to describe the kinetic energy function of state, implies a corresponding states
scaling relationship to thermal fluids. A subsequent question addressed here, therefore, is:
can the properties of this model granular material be predicted from the known properties
of the classical hard-sphere fluid? If so, what are the corresponding state scaling laws
that will enable the calculation of granular ‘thermodynamic properties’, such as the steady-
state energy? Also of interest is the development of constitutive transport relations for the
computational fluid dynamics (CFD) simulation of real granular processes. How are the
granular transport coefficients of kinetic energy, mass and momentum in the granular and
thermal systems of spheres, respectively, related?

2. Model and simulation methods

The simulation model comprises a fixed number(N) of inelastic spheres confined within
the rigid inelastic walls of a uniaxially shaking box (figure 1(a)) which shows how the box
is physically shaken. The oscillating amplitude of the box is a ‘saw-tooth’ wavefunction
(figure 1(b)) as described in greater detail previously (Knight 1993). The wall velocity
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(vw) remains fixed as a constant condition of a particular steady state, and relates to the
amplitude(λ), and the frequency(ω), according to

vw = 4λω.

Frequency and amplitude cannot, therefore, both be varied independently when the wall
velocity is fixed. When the only time scale in the model is 1/ω, and all distances are
reduced by the particle diameterσ , the state (or steady state) of the system is uniquely
determined by the specification of either a reduced amplitude or a reduced velocity, i.e.
both λ andvw cannot vary independently.

Figure 1. The saw-tooth shaker. The granular spheres are placed in a vibrating cube (a), and
the cube is shaken at constant velocity and at a steady state with the displacement(λ) given by
the saw-tooth form as shown in (b).

Simulations have been performed by making changes to a conventional hard-sphere fluid
molecular dynamics program (Alder and Wainwright 1960), by considering a fixed-width
system within the two bandwidths along the axis of motion, say thex-direction. Only one
bandwidth needs to be considered to specify the model. A simple reversal of the following
explanation, as defined for the farX-wall, completely specifies the model granular system.

There are three distinct types of particle–wall collision which can occur inside the
defined band. Firstly there is the on-coming collision in which an increase in particulate
energy is observed; secondly, there is an off-going collision in which a particle velocity
is damped, and finally a double collision, where the net energy transfer is either zero or
positive. A double collision may occur when an off-going collision causes a particle’s
trajectory to remain within the band for a sufficient interval to allow a second on-coming
collision.

The exact procedure for calculating the wall collision timetw of a particle with a moving
wall is given in detail elsewhere (Knight 1993). Briefly, the process involves splitting the
time interval into three separate units as follows:

tw = tA + tB + tC.

tA denotes the time for a particle to reach the lower limitσL (in the case of the upper band)
of the defined band from

tA = ((σL − σ/2) − rx)

vx

(1)
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which applies to the first particle–wall collision time as if this limit were a stationary wall,
as defined below; in equation (1),rx is thex-coordinate of the particle,vx is the component
of velocity in thex-direction andσ is the diameter of the particle. In the case where a
particle is already located within this band due to a combination of a wall and particle
collision or as in the case of a double collision,tA is then set to zero. If a collision occurs
before the wall reaches its turning pointσH then tB is calculated from

tB = (rw − (σL − σ/2))

vw − vx

(2)

where rw denotes the wall position at timetA. Equation (2) represents the second time
interval.

If, however, the wall reaches its turning point before the collision occurs,tB then takes
the value of the time remaining to get the wall to its turning point and the particle is moved
accordingly. The final timetC (normally set at zero) then comes into play which is found
in the same manner as in equation (1) to give the third and final component of the collision.

The final modification is to compute the change in thex-component of the particulate
velocities when undergoing wall collisions. Remembering that the wall velocity is a positive
constant as defined above, all three possible types of collision are shown in equation (3)
below and, although the kinetic energy within the system is free to fluctuate, the equations
must abide by the conservation of momentum laws and the respective velocities after
collision are as follows:

Type of collision Change in velocity

On-coming collision vx = −εwvx − (1 + εw)vw (3a)

Off-going collision vx = −εwvx + (1 + εw)vw (3b)

Double collision vx = εwvx − (1 + εw)vw. (3c)

εw is a constant coefficient of restitution in particle–wall collisions. In the simulations here,
εw is 1, i.e. the particle–wall collisions are elastic.

3. Spheres with elastic collisions

When both the particle–wall and the particle–particle coefficients of restitution are unity,
all collisions are elastic and the saw-tooth shaker puts energy into the system by on-going
wall collisions faster than it is taken out by some off-going wall collisions. The net result is
that the kinetic energy, i.e. the ‘granular temperature’, of the particles increasesad infinitum
and a constant kinetic energy steady state is unachievable.

The rate of increase ofE∗ as a function of time can be predicted analytically from
kinetic theory of gases or, more precisely, fromZ, the pressure equation of state of the
hard-sphere fluid at the same number density as the spheres in the shaking box. The number
density of the system(ρ) is defined asNσ 3/V and as the packing fractiony is defined
as πρ/6, a density of 1 corresponds to a packing fraction ofπ/6. The particle–wall and
particle–particle collision frequencies are given exactly according to kinetic theory by Turner
and Woodcock (1992) and in appendix B, respectively, as

8P = 3(Z − 1)/
√

π

8W = ρZ/(2
√

π).
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These collision frequencies are evaluated by calculatingZ from a hard-sphere fluid
equation of state, e.g. the Carnahan–Starling equation (Carnahan and Starling 1969)

Zcs = pV

NkT
= 1 + y + y2 − y3

(1 − y)3
.

The evaluation of the rate of energy input for a saw-tooth shaker is derived in
appendix A.1. This theoretical calculation assumes that the granular system obeys the
equipartition of energy principle and also the Maxwell–Boltzmann distribution law. The
obedience to the equipartition principle is first tested for spheres with perfectly elastic
collisions.

3.1. Equilibration times

For perfectly elastic spheres, with every increasing energy with time, once the system has
come to equilibrium with the saw-tooth shaker, there is no ‘new physics’ as time progresses.
A quasi-steady state is reached when there is no further tendency for the system to apportion
its (ever-increasing) energy differently. This may or may not be in accordance with the
equipartition principle and is tested below.

It is apparent that there are two dominant factors which influence the time for the system
to reach equipartition, namely the density and speed of oscillation, and any increase in either
of these gives rise to faster equilibration times.

The behaviour observed as a function of density is simply explained by the increased
particle–particle collision frequency8P. At higher densities the mean free path, i.e. the
average distance between successive particle collisions, is shortened. This allows the ratio of
8P/8W to increase, which causes more dissipation of energy and therefore faster equilibrium
times. At a constant density, however, one might expect that faster oscillations should induce
instability and longer equilibrium times as there is more energy being channelled into the
x-direction. Precisely the opposite effect is found: as the wall speed increases, so do the
particle speeds, which has the effect of lowering the collision times between all particle
pairings and therefore increasing the collision rate8P which in turn enables equilibrium
to occur much faster than for slower oscillations. The graph shown in figure 2 compares
equilibrium times found throughout the density range at various shaking amplitudes from
1% to 90% of the box length. The results show that the only region in which a quasi-steady
state cannot be accessed on a reasonable time-scale is at very low shaker speeds in very
low densities. At all amplitudes up to the order of one box length, equipartition prevails.

3.2. Equipartition at very large amplitudes

An interesting question is: at what point of increasing the amplitude at very high amplitudes,
up to many times the box length, will equipartition not be obeyed and how will the energy
redistribute itself? One might expect, for example, that at a sufficient amplitude all the
kinetic energy might reside in the direction of shaking. This is not found to be the case.

Figure 3 compares two simulations at the large amplitudes of 1 and 100 box lengths to
show the variation in the percentage of energy contained in thex degree of freedom, i.e.
the direction of shaking. The larger the amplitude of oscillation, the more pronounced the
behaviour becomes.

This extraordinary effect may be explained by making reference to a simple impact
oscillator with elastic walls as described by Pippard (1985). This model shows that a particle
can move in phase with the box and also drastically change its speed by a succession of



4370 T A Knight and L V Woodcock

Figure 2. Equilibration times for different
amplitudes of shaking (as a percentage of box
length) as a function of density. The dimensionless
unit of time is one cycle of the saw-tooth shaker.

Figure 3. Distribution of kinetic energies be-
tween the three Cartesian degrees of freedom
in the steady-state vibrating rigid box model
at zero gravity; (a) for very large amplitudes,
oscillatory deviations from instantaneous obe-
dience to equipartition are seen but the time-
averaged steady-state kinetic energies still obey
the equipartition principle, and (b) a compari-
son between two amplitudes showing that when
below ten box side lengths, equipartition is
continuously obeyed.

on-coming or off-going collisions. By examination of the Pippard impact oscillator (Knight
1993) it can be seen that when an amplitude above one box length is used, the behaviour,
if stable, must repeat over each wavelength. When considering a three-dimensional system,
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the same behaviour can occur and thex degree of freedom acts in phase with the box and
may incur a large swing in its value. The in-phase oscillations of the normal degrees of
freedom, in figure 3, are merely a consequence of plotting they, z energies as a percentage
of the total.

4. Equipartition with rotational spin

4.1. Rotational equations of motion

In a collision between two non-rotating spheres (figure 4) a normal impulse is generated
which governs the post-collisional velocities of the colliding pair. In a collision between
two rotating spheres, two impulses are present: the normal, created as before by the relative
translational velocities, and a tangential component which is produced by the relative angular
velocities. The post-collisional velocities involve combining both the normal and tangential
components in various ratios to allow the simulation of spheres ranging continuously from
perfectly smooth to fully rough.

Figure 4. Simple model for inelasticity in rotational collisions.

The equipartition theorem states that each degree of freedom must have an energy of
kT /2; in this case the total rotational energy is

1
2m(v2

x + v2
y + v2

z ) + 1
2I (w2

x + w2
y + w2

z ) = 3kT

whereI is the moment of inertia, which for a sphere is

I = 2
5mσ 2

andwx , wy andwz are the independent angular velocities which define the exact magnitude
and direction of spin of a sphere.

Manipulation of the redefined equations for the conservation of momentum and energy,
or by following the procedure outlined by Goldsmith (1960) (see also Chapman and Cowling
1970) yieldsv and w̄, the new post-collisional velocities in terms of the initial impact
velocities as given by equations (4)–(8) below for a collinear impact (figure 4):

v1 = u1 − 4m21A (4)

v2 = u2 + 4m11A (5)

w̄1 = w1 − 10m21A/σ1 (6)

w̄2 = w2 − 10m11A/σ2 (7)
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where

1A = (u1 − u2 + w1σ1 + w2σ2)/7(m1 + m2). (8)

These equations, which are calculated for all six defined velocities for three dimensions,
represent the case initially proposed by Bryan (1894) and Pidduck (1922) for a perfectly
rough sphere where the tangential and normal impulses,gT andgN, are completely reversed
after impact. To simulate partially rough spheres, a roughness coefficient(β) is introduced
(Lun and Savage 1987), to model partial surface friction.β is used in a similar manner
to the coefficient of restitutionε, but models the tangential impact more effectively by its
ability to vary between−1 and 1, which relate to simulations involving perfectly smooth
and perfectly rough spheres respectively.

4.2. Equations for frictional-wall collisions

These equations are obtained (see e.g. Goldsmith 1960) by combining the conservation
of angular momentum (equation (9)) with the velocity ratio before and after impact
(equation (10)). When a collision with, say, a wall in they-direction occurs, whilevy

is simply reversed as before, andwy is directionally independent, all the remaining degrees
of freedom now contribute to the collision. For bothX- andZ-directions, the conservation
of angular momentum requires that

I (w̄ − w) − mσ(v − u) = 0 (9)

and the definition of the coefficient of restitution determines the velocity ratio:

v + σw̄ = −εw(u + σw) (10)

whereεw = 1 for perfectly elastic walls. By manipulating these equations it can be shown
that

v = u − (u + σw)(εw + 1)I

I + mσ 2

which on resubstitution gives

w̄ = w − mσ(u + σw)(εw + 1)

I + mσ 2

where the respective components in they-direction are

v = −u and w̄ = −βw.

If the collision is with a moving wall, the impact is always modelled in the same way
but, in this case, the wall velocity must be included in the above calculations. Both theX-
andZ-components of spin are affected for a movingY -wall.

4.3. Equipartition with spin

Equipartition may only be obtained whenβ = 1; this models the idealized but unrealistic
granular system of perfectly rough and perfectly elastic spheres. For all other values of
β, energy is lost during each impact, except for the limiting case whenβ = −1, at which
point interchange of energy between rotational and translational modes is not allowed and
equilibration cannot occur.

As the main purpose of this article is to examine the equipartition theorem during the
influence of system vibrations, only the case whenβ is unity is considered. In this limit
the equipartition principle requires that the total energy of the system be shared equally
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among all six degrees of freedom. Over a wide range of amplitudes, it has been observed
that the rotational modes follow very closely their respective translational modes during
equilibration, and that equipartition of the whole system does indeed eventually prevail.

To demonstrate this behaviour figure 5 shows plots of all six components of a system
of 500 particles, at the reduced densityρ = 0.5, being shaken in thex-direction with the
amplitudeλ = σ/10. In this simulation all the energy of the system is initially placed
into both z-components of energy. Complete equipartition is observed after 60 cycles of
the shaker. Although the behaviour of the rotational degrees of freedom, compared to the
translational degrees, is similar in the latter stages of the simulation, initially, when the
system is trying to reach a balance, the differences in the rotational energy components are
less than in the translational components. The driving force towards equipartition appears
to be even greater amongst the rotational modes than the translational modes.

Figure 5. A demonstration of the equipartition of energy in six degrees of freedom, at steady
state with uniaxial shaking(λ = σ/10), after initially setting all the energy in the one(Z)

translational degree of freedom.

5. Spheres with inelastic collisions

5.1. Dependence of the granular energy

When the energy input from the saw-tooth shaker walls is balanced by the dissipation of
energy through inelastic collisions, a steady state of constant kinetic energy, which actually
fluctuates slightly about a mean value, is obtained. At low amplitudes equipartition prevails,
and the mean kinetic energy per sphere(E) stays constant. A reduced kinetic energy per
sphere, defined as

E∗(ρ, vw, ε) = E/(mσ 2ω2)

at a given density(ρ), is a function only of the wall velocity(vw), and the constant of
inelasticity (ε). E actually scales with the wall velocity(mv2

w) and the reduced granular
energy(E∗) is independent of the wall velocity.

When either the particle–wall or the particle–particle collisions are inelastic, with a
prescribed coefficient of restitution, the shaker equilibrates to a steady state with a total
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kinetic energy per particleE that depends only on the density(ρ), wall velocity (vw) and
the inelasticity constant(ε).

The rate at which energy is removed from the system by inelastic particle–particle
collisions can be calculated from the collision rate (appendix A.2). This dissipation rate
may then be used in an energy balance equation for inelastic spheres to solve for the
steady-state granular temperatureE∗ as a function of the granular steady-state variables.

The thermal kinetic energy of the system in equations (A3) and (A5) is equivalent
to kT , where k is Boltzmann’s constant. In the saw-tooth shaker energy balance,kT

becomes thea priori unknown granular kinetic energyE. This quantity is commonly, but
inappropriately, often referred to as a ‘granular temperature’. When expressed in saw-tooth
units as above,E∗ can be computed analytically for saw-tooth systems at low amplitude
that obey the equipartition principle by solving the energy balance equation. At steady state,
1Ein = 1Eout and the respective1E’s are given in appendix A by equations (A3) and
(A5). The resultant energy-balance master equation is

ρZ

2
√

π

{
2vw[1 − e−mv2

w/(2E)]

[
2mE

π

]1/2

+ 4mv2
w

[
1 − 1

2 erf

(
vw

√
m

2E

)]}

= 3(Z − 1)(1 − ε2)E√
π

. (11)

This equation can be solved (using ‘solver’ on an EXCEL spreadsheet for example)
to determine the granular kinetic energyE for any given density, velocity and inelasticity
constant for the saw-tooth shaker. This energy balance equation further implies that the
energy in reduced units of the saw-tooth system, i.e.E∗, is not dependent on frequency
or amplitude and should, according to this theory, obey the equipartition laws inthe limit
of small amplitude. This theoretical prediction follows from the absence of any explicit
amplitude dependence of the granular energies in the energy balance equation (11).

It should be noted thatE∗

(i) does not itself depend upon that amplitude, and
(ii) obeys the equipartition principle, i.e. the kinetic energy is distributed evenly amongst

the degrees of freedom despite the unidirectional nature of the shaking.

The extent to which these assertions are upheld, for small finite systems at finite
amplitudes, is examined below. The simulations reported in the previous section have
already demonstrated a total obedience of equipartition of a system of frictional spheres
with six degrees of freedom, at the amplitude ofλ = σ/10.

For a given value of the inelasticity coefficient(ε), E∗ is an irreducible function only of
reduced number density for granular inelastic spheres shaken at low amplitude. The energy
balance equation, however, suggests that in the limitε → 1 the dependence on inelasticity
may also scale out as(1 − ε)−1. It has been demonstrated recently by Warr and Huntley
(1995b) that for a single particle in a saw-tooth shakerE∗(1−ε)−1 is constant. This scaling
law is not exact for a many-body system but its applicability can be tested over a range of
ε from the present simulation data.

The calculated values ofE∗ over the whole range ofε are shown in figure 6. Asε → 0,
this is the maximum rate of energy extraction by inelastic collisions andE∗ converges on to
a limiting function of density.E∗/(1− ε) does appear to hold quite well for low values of
ε but deviates from a constant value asε approaches unity, i.e. asE∗ approaches infinity.
E∗ and the relaxation times for equilibration diverge to infinity, both as density goes to zero
and/or asε approaches unity.
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Figure 6. E∗ (the reduced granular energy= E/(mσ 2ω2)) as a function of density for a range
of ε values as given by the hard-sphere fluid corresponding states scaling theory; whenε → 1,
E∗ → infinity, and asε → 0, E∗(ρ, ε) → a constant minimum value.

At high density, which is more important for dense granular media,E∗ appears to
approach a limiting constant value around 4. Since the saw-tooth velocity is also 4, in
saw-tooth units, whenλ = 1 andω = 1, this suggests that, in the high density limit, the
root mean squared velocity of all the particles becomes the same as that of the saw-tooth
shaker, i.e.vw. This may become an analytic result in the limit of maximum close packing,
amorphous or crystalline.

5.2. Equipartition at low amplitude

The results of the computer simulations, additional to the analytical energy balance, confirm
that the granular energy of the fluidized spheres depends only on the shaker velocity, and
not the amplitude or frequency. The condition for the energy balance to hold, however, is
that the amplitude is small compared to the mean velocity of the particles.

A series of computer simulations have been carried out for various saw-tooth amplitudes
(λ = 1, 0.5, 0.25 and 0.1), forN = 100 and 500, over the whole density range, and for
a value of the inelasticity constantep = 0.9 for particle–particle collisions. Details of all
these simulations, together with the granular kinetic energies, resolved into the translational
components, are collected in table 1.

The results of this comparison between theory and simulation are compared in figure 7.
The energy balance equation has been tested by comparing the calculated energy from the
computer simulations with the predicted granular energy obtained by solving the kinetic
energy balance equation (11). The comparisons in figure 7 show that, over the whole
accessible density range of the simulations, the analytical kinetic theory prediction is
accurate but it is not exact. The computer results show a more complex behaviour of
E∗, particularly at intermediate densities; the theoretical prediction is a single minimum at
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Table 1. List of simulation steady states investigated showing the total granular energyE∗
and its three degrees of freedom which define the equipartition ratio(0) for two system sizes
(N = 100 andN = 500); these numerical results verify that an increase in either the number
density or amplitude reduces0, implying increased deviations from the equipartition principle.

Run N λ∗ ρ∗ Colls E∗ E∗
xx E∗

yy E∗
zz 0

1 100 1 0.01 600 000 569.498± 14.87 202.77 182.85 183.79 0.97
2 100 1 0.1 50 000 115.745± 6.13 43.27 36.39 36.07 0.94
3 100 1 0.2 50 000 64.4427± 3.53 25.69 19.44 19.30 0.90
4 100 1 0.3 50 000 43.7566± 0.87 18.79 12.54 12.42 0.86
5 100 1 0.4 50 000 24.6507± 1.53 14.33 8.73 8.71 0.82
6 100 1 0.5 100 000 24.6507± 0.71 11.71 6.48 6.45 0.79
7 100 1 0.6 100 000 19.9087± 0.59 9.38 4.95 4.91 0.77
8 100 1 0.7 250 000 17.0467± 0.77 8.52 4.28 4.24 0.75
9 100 1 0.8 150 000 15.9667± 0.57 8.27 3.84 3.85 0.72

10 100 1 0.9 800 000 14.7067± 0.18 7.81 3.58 3.31 0.70
11 100 1 0.93 350 000 11.9000± 0.47 6.77 2.57 2.55 0.65
12 500 1 0.01 900 000 181.030± 67.0 64.88 58.22 57.93 0.96
13 500 1 0.1 100 000 37.1886± 1.13 13.36 11.94 11.89 0.96
14 500 1 0.2 150 000 20.4441± 0.71 7.43 6.54 6.47 0.95
15 500 1 0.3 200 000 14.7445± 0.55 5.45 4.64 4.65 0.95
16 500 1 0.4 375 000 16.5450± 0.70 6.59 4.94 5.01 0.90
17 500 1 0.5 700 000 19.9170± 0.44 8.86 5.51 5.54 0.83
18 500 1 0.6 850 000 19.9941± 0.80 9.46 5.26 5.27 0.79
19 500 1 0.8 800 000 16.4297± 0.52 8.79 3.83 3.80 0.70
20 500 1 0.9 600 000 15.4113± 1.32 8.46 3.46 3.49 0.68
21 500 1 0.99 550 000 13.8115± 0.52 7.89 2.97 2.95 0.64
22 500 0.5 0.6 100 000 2.94666± 0.12 1.11 0.91 0.91 0.93
23 500 0.5 0.9 200 000 5.30110± 0.29 2.53 1.39 1.39 0.79
24 500 0.25 0.6 100 000 0.73966± 0.03 0.27 0.24 0.23 0.95
25 500 0.25 0.9 100 000 0.95775± 0.05 0.38 0.29 0.29 0.90
26 500 0.01 0.4 250 000 0.00139± 0.0001 0.00049 0.00045 0.00046 0.98
27 500 0.01 0.9 250 000 0.00126± 0.0001 0.00045 0.00041 0.00041 0.97

a density around 0.5.
It seems likely that the main reason for the discrepancy between theory and experiment

is due to finite-size effects in the granular simulations. Other reasons for small deviations
may be the finite amplitude relative to the size of the box and/or the correlation length of
the particles. For small systems, at finite amplitudes, there is a greater likelihood of either
double or multiple successively correlated collisions with the same particle. These distort
the distribution assumed by the simple Maxwellian distribution model based on the collision
frequencies of the hard-sphere fluid at equilibrium.

5.3. Non-equipartition at high amplitudes: the equipartition ratio

An equipartition ratio can be defined by

0 = 3(Eyy + Ezz)

2E
.

For all the simulations carried out, the equipartition ratios are given in table 1. Taking a
particular density of, say, 0.9; whenλ varies between 0 andσ , then just as0 (the difference
in translational modes) increases, a similar difference operator is needed to describe the
variation seen in the rotational modes. Whereas atλ = σ both the translational and rotational
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Figure 7. A comparison between the corresponding states theory forE∗ (full curve) and the
computer simulation results at selected densities (asterisks). At this amplitude for the simulations
(λ = σ) the comparisons show small but significant deviations from equipartition at intermediate
and high densities.

modes in the direction of vibration now take up more energy than the accompanying modes,
when λ is small,0 diminishes and the system reverts to one of equipartition. This result
for the effect of finite amplitude on the equipartition ratio is shown, for this state point, in
figure 8. The equipartition ratio approaches unity asλ → 0 and appears to approach2

3 as
the amplitude increases toσ .

The results in table 1 also demonstrate a significant system size effect. Figure 9 shows
the equipartition ratio plotted against the characteristic length of the system, i.e. the length
(L) of the side of the box, over the whole density range. For the smaller number of particles
at the same box length, equipartition holds better. This implies that it is not primarily the
amplitude relative to the box length that determines the extent of non-equipartition, but the
ratio of the amplitude to a characteristic path length for the structure of the particles at
steady state, that increases with density.

If a characteristic path length is simply defined as3 = ρ−1/3, the results plotted in
figure 10 confirm that this is indeed the case. At both high and low path lengths the two
different system sizes show much the same non-equipartition extent. These results suggest
that provided the system size is at least several hundred particles, the criterion for the
obedience of the equipartition principle is that the ratio of the amplitude to a mean path
length

λ/3

should be less than unity for the equipartition of kinetic energy.
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Figure 8. The equipartition ratio(0) as a function of amplitude for a system of 500 spheres
with a saw-tooth shaker at constant velocity for inelastic spheres(ε = 0.9).

Figure 9. The equipartition ratio(0) as a function of box length(L) for systems of 100 and
500 inelastic spheres(ε = 0.9).

5.4. Maxwellian velocity distributions

In addition to testing the equipartition of energy principle, the steady states of the system
have been investigated for the actual distribution of velocities in the directions transverse
and longitudinal to the shaker wall velocity. Molecular systems in thermal equilibrium,
besides adhering to the equipartition principle, distribute the molecular velocities according
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Figure 10. The equipartition ratio(0) as a function of correlation length(3) for systems of
100 and 500 inelastic spheres(ε = 0.9).

to the Maxwell–Boltzmann distribution law. According to this exact result of kinetic theory,
the probability of a molecule having a particular velocity in any component is given by

P(vx) =
( m

2πkT

)1
2

exp

(
−mv2

x

2kT

)
. (12)

This distribution is assumed in the kinetic equations on both sides of the energy
balance equation (11). In the energy input from particle–wall collisions with the saw-
tooth shaker, a Maxwellian distribution is explicitly assumed for the relative particle–wall
velocity. Likewise, in the collisional energy dissipation side of the balance equation, the
particle–particle collision frequency is calculated from an equation of state which assumes
quasi-thermodynamic equilibrium and hence implicitly assumes a Maxwellian distribution
of particle velocities.

The results of comparisons between the Maxwell–Boltzmann distribution law and
the actual saw-tooth shaker distributions (in which ‘kT ’ becomesE∗) are illustrated in
figure 11. In all simulated states with small amplitude and/or sufficiently low density where
equipartition is upheld, a Maxwellian distribution of velocities is obtained. This is illustrated
in figure 11(a). Very slight deviations from a Maxwellian distribution are seen at somewhat
higher densities when the amplitude is 1σ (figure 11(b)) but when the deviations from
equipartition are large, at the higher packing density, the distribution of velocities deviates
markedly from the Maxwellian law.

Figure 11(c) shows that at large shaking amplitudes at high densities, the parallel
distribution of velocities in the parallel has a flat top, whereas the distribution in the
transverse directions is narrower, but very close to the Maxwellian model.

The reasons for the unusual flat-top shape of the longitudinal distribution can be gleaned
from the total kinetic-energy–time curves for these three runs, also shown on the right-hand
side of figure 11. At sufficiently high amplitude or density, the total kinetic energy begins to
fluctuate with the periodicity of the shaker itself, and thex-component of the time average
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Figure 11. Distributions of absolute velocities particles in the saw-tooth shaker for three different
steady states by comparison with a Maxwell–Boltzmann distribution (full curve). (A) Run 26:
low amplitude(λ = 0.01), ρ = 0.4; equipartition ratio= 0.98. (B) Run 16: large amplitude
(λ = 1.0), ρ = 0.4; equipartition ratio= 0.90. (C) Run 20: large amplitude(λ = 1.0), ρ = 0.9;
equipartition ratio= 0.68. The corresponding plots against time on the right are the root mean
square speeds.

can be resolved into a convolution of ‘mini-Maxwellian distributions’ each centred on the
absolute velocity of the shaker. This implies that there is a correlation between the wall
velocities and the particle velocities.
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If a peculiar velocity of the spheres is defined relative to the wall velocities (i.e.
vr = v − vw) one might expect to recover the random Maxwellian velocity distributions
even when equipartition does not prevail between transverse and longitudinal directions.
Figure 12 shows that this is, at least approximately, the case. It is interesting to note the
large discrepancy between the distributions of absolute velocities and relative velocities,
especially in the longitudinal direction, when anisotropies in the kinetic energy distribution
occur.

Figure 12. The distribution of relative velocities, with respect to the wall velocity for Run 20,
i.e. at large amplitude,λ = 1.0; ρ = 0.9; and equipartition ratio= 0.68, by comparison with a
Maxwell–Boltzmann distribution (full curve). This near-Maxwellian contrasts with the flat-top
distribution obtained for the absolute velocities as seen in figure 11(c).

5.5. Corresponding states scaling laws

From the foregoing treatment and simulation results, it is clear that this fluidized system of
spheres has a unique corresponding states relationship with the thermal hard-sphere fluid.
In the limit of low amplitude to box length ratio, and for sufficiently large particle number
N , i.e. at least several hundred, every state of the saw-tooth fluid has a corresponding state
of the hard-sphere fluid.

In both systems the dimensions of mass(m) and length(σ ) are the same, and the
properties of the granular system at the same density as the hard-sphere fluid will then
scale according to the ratio of the respective characteristic times. OnceE∗ is obtained
for a saw-tooth shaker from equation (11), this can be used to calculate any other
property of the granular system from the value of that property for the thermal hard-sphere
fluid. Of particular interest may be the granular pressure, granular diffusivity, or granular
thermodynamic properties such as the entropy. If the classical thermal hard sphere units are
massm, lengthσ , andmσ 2/(kT )1/2 for time, denoted by a superscript dagger, andE† is
a constant(= 3

2) independent of density. For the present granular spheres the scaling laws
for the above-mentioned granular properties are:

energy E∗(ρ, ε) = E/(mσ 2ω2) (13)
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whereE is obtained from the energy balance equation (11). Then, granular thermodynamic
properties can be calculated from the scaling equations

pressure p∗(ρ, ε) = p†(ρ)E∗(ρ, ε)/E† (14)

entropy S∗(ρ, ε) = S†(ρ)E∗(ρ, ε)/E† (15)

and likewise, the transport coefficient relations may also be obtained

‘thermal’ conductivity κ∗(ρ, ε) = κ†(ρ)(E∗(ρ, ε)/E†)3/2 (16)

diffusivity D∗(ρ, ε) = D†(ρ)(E∗(ρ, ε)/E†)1/2 (17)

viscosity η∗(ρ, ε) = η†(ρ)(E∗(ρ, ε)/E†)1/2. (18)

Equations (13) to (18) are the basic scaling equations for predicting the thermodynamic and
transport properties of the saw-tooth granular fluid of inelastic spheres, given the shaker
parameters, from the known equation of state, i.e. collision frequencies, of the thermal
hard-sphere fluid.

Finally, although the expression ‘granular temperature’ is really a misnomer for the
granular kinetic energyE, and may be largely an irrelevance, it seems curiously interesting
to calculate the actual granular temperature of a fluidized hard-sphere media. Adopting
the ideal gas as the working substance for the absolute temperature scale, in which case
Boltzmann’s constant retains its usual value, for a system of 1 cm diameter spheres
(ε = 0.95), with mass 1 g, shaken at the rate of 1 cps for an amplitude of 1 cm; if
the number densityρ = 1.0, from figure 6,E∗ = 32 thereforeE = 30/4 = 8 ergs and
the granular temperature is ‘T ’ = 8/k = 6 × 1016 K. These granular fluids are quasi-‘hot’
states indeed! This is the ambient temperature on the absolute scale that would be required
to maintain the macroscopic granular system at the same state of thermal activation as the
saw-tooth shaker in its gravity free environment.

6. Conclusions

An analytical analysis of a saw-tooth shaker has been presented and tested against computer
simulations. It has been shown that granular materials when fluidized by shaking under zero
gravity, will, at steady state, obey the equipartition principle of statistical mechanics. This
obedience occurs at amplitudes of oscillation which are small compared to a characteristic
length for particle–particle structural correlation which is roughly the reciprocal cube root
of density.

This observation places the concept of ‘granular temperature’ on a firm statistical
mechanical basis for these systems, and thereby permits the steady-state properties of such
matter to be expressed as quasi-thermodynamic functions. Comparisons between the shaker
simulation results for low amplitudes, and the kinetic-theory-based energy balance model,
show that there exists a corresponding states relationship between the granular steady state,
and the thermodynamic state the classical hard-sphere fluid at equilibrium.

The coefficient of inelasticity of real granular materials is extremely difficult, if not
impossible, to measure experimentally. The present results suggest that the construction of
saw-tooth shakers to examine the total kinetic energy as a function of velocity, initially,
albeit in microgravity conditions, could be an experimental means of accessing inelasticity
constants for real materials in the form of spherical beads.

It is anticipated that this preliminary research could further lead to the quasi-
thermodynamic description of a range of steady-state granular transport phenomena, such as
size segregation, in terms of thermodynamic mixing laws for binary systems, for example.
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Appendix A. Energy balance equations for a saw-tooth shaker

A.1. Energy gain from wall impacts

One saw-tooth waveform is realized in each time unit; there is always one constantly moving
on-coming wall and one simultaneous off-going wall. In essence, the integrals below assume
that there are two moving walls, one which is always compressing the system, and another
which is acting in the opposite direction.

When a particle moving at a speedu collides with a near-sided on-coming wall moving
at a constantvw, the new velocity,v, of the particle is

ν = −εwu + (1 + εw)vw

and likewise for an off-going wall, the new velocity is given by

ν = −εwu − (1 + εw)vw

where it is assumed that a constant coefficient of restitution (i.e. impact velocity independent)
is present during each wall contact. This coefficient of restitution which takes into account
the surface of the walls and the material constant of the particles at an average impact
velocity of 〈ν0〉 is denoted byεw and is not to be confused with the previously defined
coefficient of restitutionε for particle–particle collisions.

The change in energy that these two walls impart on the system is shown in
equations (A1) and (A2) by simply considering the change in kinetic energy before and
after each type of impact.

1EIN = m

2
[ν2

0(ε2
w − 1) + 2εw(1 + εw)ν0vw + (1 + εw)2v2

w] (A1)

1EOUT = m

2
[ν2

0(ε2
w − 1) − 2εw(1 + εw)ν0vw + (1 + εw)2v2

w]. (A2)

To get the net increase, a Maxwell distribution of velocities is assumed.f (vx) represents
the x-component of a particulate velocity, and is given by

f (vx) dvx =
[ m

2πkT

]1/2
e−mv2

x/2kT dvx

and an integration over the whole range of velocities is then performed. It should be noted
that when integrating for the off-going wall, a lower limit ofvw is used as no wall collisions
may occur unless a particulate velocity is greater than the wall velocity.

1E = m

2

( m

2πkT

)1
2

∫ ∞

0
[(v2(ε2

w − 1) + 2vεw(1 + εw)vw

+(1 + εw)2v2
w)e−mv2

w/(2kT )] dv

+m

2

( m

2πkT

)1
2

∫ ∞

vw

[(v2(ε2
w − 1) − 2vεw(1 + εw)vw

+(1 + εw)2v2
w)e−mv2

w/(2kT )] dv.
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The evaluation of these integrals gives

1E = vw(1 + εw)[2εw − (1 + εw)e−mv2
w/(2kT )]

[
mkT

2π

]1/2

+ mv2
w(1 + 3ε2

w) + 2(ε2
w − 1)kT

− 1
2 erf

(
vw

√
m

2kT

)
[mv2

w(εw + 1)2 + (ε2
w − 1)kT ]

which can be simplified by settingεw at 1 for the case of elastic walls

1E = 2vw[1 − e−mv2
w/(2kT )]

[
2mkT

π

]1/2

+ 4mv2
w

[
1 − 1

2 erf

(
vw

√
m

2kT

)]
. (A3)

The final expression for the wall energy input1Ein is therefore obtained by multiplying
equation (A3) by8W, the wall collision rate per particle per moving surface which is defined
in appendix B.

A.2. Energy loss by inelastic collisions

The mean energy loss in particle–particle collisions is given by

1E = m(1 − ε2)〈ν2
0〉

4
(A4)

where〈ν0〉 is the average impact velocity of a particle andε is the constant of inelasticity.
To obtain the net energy loss per particle, this quantity has to be multiplied by the

particle–particle collision frequency(8P) and divided by the number of particles in the
system(N). Also as the impact velocity is related to the mean speed according to kinetic
theory by:

〈ν2
0〉 = 4〈ν2〉

3
= 4(3kT /m)

3
= 4kT

m
.

On substituting into equation (A4)

1E = 8P(1 − ε2)kT

N
.

As it can be shown (Turner and Woodcock (1990)) that8P per particle is 3(Z − 1)/
√

π

whereZ is the reduced pressure equation of state(pV/NkT ) for the thermalized system,
the resulting energy loss per particle can be expressed as

1E = 3(Z − 1)(1 − ε2)kT√
π

. (A5)

Appendix B. Calculation of the wall collision frequency

The pressure of the hard-sphere fluid at equilibrium is related to the collision frequency of
wall collisions via the equation of state of the system as shown below.

On each impact with a wall, a change in momentum of 2m〈ν0〉 occurs where〈ν0〉
denotes the average impact velocity of a particle.

It therefore follows that the pressure is given by

p = 2m〈ν0〉8W

where8W is the total number of collisions per particle with the wall, per unit area in each
time unit.
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As the equation of state is defined as

Z = pV

NkT

it then follows that the wall collision fequencyx momentum exchange equates to the
premiere, and is given by

8W = NZkT

2m〈v0〉V .

As 〈ν0〉 = (πkT /m)1/2 and substituting8W for the corresponding8†
W to convert into

hard-sphere units, as given by

8
†
W = 8Wσ 2

(
mσ 2

kT

)1/2

it follows that

8
†
W = ρZ/2π1/2

whereρ denotes the number densityNσ 3/V , or by definingpσ 3 as the reduced pressure
p†, we have

8
†
W = p†/2π1/2 .

Appendix C. Nomenclature

β roughness coefficient
ε constant coefficient of restitution for particle collisions
εw constant coefficient of restitution for wall collisions
0 equipartition ratio
8P particle–particle collision frequency per particle
8W partial–wall collision frequency per particle
ρ number density(Nσ 3/V )

σ particle diameter
λ amplitude of saw-tooth wave
ω frequency of saw-tooth wave
E kinetic energy per particle
E∗ kinetic energy saw-tooth reduced units
E† kinetic energy thermal hard-sphere reduced units
Exx x-directional kinetic energy
Eyy y-directional kinetic energy
Ezz z-directional kinetic energy
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gN normal impulse in a particle–particle collision
gT tangential impulse in a particle–particle collision
N number of particles in system
p pressure
I moment of inertia for a sphere
rw wall position
rx x particle coordinate
tA first time component; particle to lower band limit
tB second time component; band limit to wall/turning point
tC third time component; turning point to wall
tw collision time for a particle and a moving wall
u initial velocity prior to impact
V volume
vw wall velocity
vx,y,z x, y, z particulate translational velocities
〈ν〉 mean speed
〈ν0〉 impact velocity
wx,y,z x, y, z particulate angular velocities
w̄ post-collisional angular velocity
y packing fraction(πρ/6)

Z pressure equation of state(pV/NkT )
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